ASPHALTA

Prüf- und Forschungslaboratorium GmbH

ASPHALTA Niederlassung Sachsen Gartenstraße 56a 01445 Radebeul

SCHWENK Sand & Kies Nord GmbH & Co. KG Am Saale-Dreieck 3 39240 Calbe (Saale) OT Schwarz

T: (0351) 89564900 F: (0351) 89564909 sachsen@asphalta.de www.asphalta.de

Untersuchung von Asphalt, Bitumen. mineralischen und Bodenbaustoffen Begutachtung von Gesteinslagerstätten Abdichtungen von Ingenieurbauwerken Baugrundbegutachtung und Altlastenerkundung Schadensbegutachtung Gutachten zur Beweissicherung Anerkannte Prüfstelle nach RAP Stra 15 für die Fachgebiete D0, D3, I1, I2, I3 Überwachungs- und Zertifizierungsstelle SAC35 nach Landesbauordnung Mitglied im bup e.V.

25.07.2023

Prüfzeugnis Nr. R024/2023/M

Auftraggeber:

SCHWENK Sand & Kies Nord GmbH & Co. KG

Auftrag:

Freiwillige Güteüberwachung

einer feinen natürlichen Gesteinskörnung für die Verwendung nach DIN EN 13139: 2002

Anwendungsbereich: MÖRTEL

Entnahmedatum:

08.06.2023

Prüfzeitraum:

15.06.2023 bis 25.07.2023

Lieferwerk:

Werk Schlagsdorf Hauptstraße 1

03172 Guben OT Schlagsdorf

Dieses Prüfzeugnis umfasst 4 Seiten und 1 Anlage.

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Die untersuchten Proben werden, sofern nicht anders vereinbart, nach Fertigstellung des Prüfzeugnisses entsorgt. Eine auszugsweise Vervielfältigung des Untersuchungsbefundes bzw. der Prüfergebnisse ist ohne unsere Genehmigung nicht gestattet.

HRB 9140 Geschäftsführer:

Dipl.-Geol. Bernd Dudenhöfer Dipl.-Ing. Kristin Noite

Bankverbindungen:

Berliner Volksbank e.G.

IBAN: DE51 1009 0000 5333 7450 05 BIC-Code: BEVODEBB

Commerzbank AG

IBAN: DE24 1008 0000 0410 5540 00 BIC-Code: DRESDEFF100

Prüf- und Forschungslaboratorium GmbH

1 Bewertungsgrundlagen

Bewertungsgrundlagen sind:

➤ DIN EN 13139: 2002/AC:2004 – Gesteinskörnungen für Mörtel

2 Probenahme

Die Probenahme erfolgte gemäß DIN EN 932-1 "Prüfverfahren für allgemeine Eigenschaften von Gesteinskörnungen – Teil 1: Probenahmeverfahren".

Teilnehmer Werk:

Herr Neugebauer

Teilnehmer Zentrallabor Nord:

Frau Kallies

Teilnehmer BauZert:

Herr Kehl 08.06.2023

Datum Probenahme: Teilnehmer RAP Stra-Prüfstelle:

Frau Hartmann am 15.06.2023

Ort der Probenahme:

Lieferwerk

Art der Gesteinskörnung:

natürliche Gesteinskörnung

Petrographischer Typ:

Sand

Material Nr.	Probe Nr.	Korn- gruppe	Probemenge [kg]	Entnahme- stelle	Leistungserklärung
14	23-174	0/2	ca.12	Halde	SCHL-2013-08-22-M vom 14.11.2022

Die am 08.06.2023 gezogene Probe wurden am 15.06.2023 im Werk Schlagsdorf an Frau Hartmann übergeben.

3 Werkseigene Produktionskontrolle

Das Werk Schlagsdorf praktiziert eine Werkseigene Produktionskontrolle (WPK) gemäß DIN EN 13139. Die WPK wird durch das Zentrallabor Nord der SCHWENK Technologiezentrum GmbH & Co. KG realisiert und durch die notifizierte Stelle 0790 überwacht und zertifiziert.

4 Herstellung und Verladung

Die Rohstoffgewinnung im Werk Schlagsdorf erfolgt im Trockenschnitt. Der Rohkiessand wird mit einer stationären Nassaufbereitungsanlage in Lieferkörnungen klassiert. Die Lieferkörnung 0/2 lagert in Form einer Halde und wird mittels Radlader auf LKW verladen.

5 Labortechnische Untersuchungen

Die labortechnischen Untersuchungen wurden nach den in den einzelnen Abschnitten angegebenen Prüfvorschriften durchgeführt.

5.1. Probenvorbereitung

Die Probenvorbereitung erfolgte nach DIN EN 932-2 " Prüfverfahren für allgemeine Eigenschaften von Gesteinskörnungen – Teil 2: Verfahren zum Einengen von Laboratoriumsproben".

Kornzusammensetzung und Feinanteile 5.2.

nach DIN EN 933-1

Prüfsieb	Siebdurchgang [Masse-%]								
[mm]		0/2							
	lst	Soll ¹⁾	Typ. Kornzusam- mensetzung ¹⁾	lst	Soli ¹⁾	Typ. Kornzusam- mensetzung ¹⁾			
5,6									
4	100	100							
2,8	100	95 - 100							
2	97	91 - 99	96 ± 5						
1	86	70 - 90	80 ± 10						
0,5	56								
0,25	14								
0,125	1	0 - 27	12 ± 15						
0,063	0,2	≤ 3	0,2						

5.3. Rohdichte und Wasseraufnahme

nach DIN EN 1097-6, Abschnitt 8 und 9

Korngruppe d/D	e Rohdichte ρ _{ssd} auf wassergesättigter und oberflächentrockener Basis [Mg/m³]		Rohdichte p _{rd} auf ofentrockener Basis [Mg/m³]		scheinba Rohdichte [Mg/m³]	ρα	Wasseraufnahme WA ₂₄ [Masse-%]	
[mm]	EW	MW	EW	MW	EW	MW	EW	MW
0/2	2,640; 2,645	2,64	2,634; 2,640	2,64	2,649; 2,654	2,65	0,2; 0,2	0,2

Soll gemäß Leistungserklärung: ρ_{ssd} 2,62 ± 0,05 Mg/m³; WA $_{24}$ 0,3 ± 0,3 M.-% EW – Einzelwerte; MW – Mittelwert

Organische Verunreinigungen und Humusgehalt 5.4.

nach DIN EN 1744-1

d/D		e Verunreinigungen il [M%]	Humusgehalt Farbe der Lösung in Bezu zur Vergleichslösung	
[mm]	Ist	Soll ¹⁾	lst vergiei	Soll ¹⁾
0/2	0	≤ 0,10	heller	heller

Prüf- und Forschungslaboratorium GmbH

Wasserlösliche Chloride* 5.5. nach DIN EN 1744-1

Korngruppe d/D	Gehalt an wasserlöslichen Chlorid-Ionen [Masse -%]				
[mm]	lst	Soll ¹⁾			
0/2	0,0009 (9,6 mg/kg)	≤ 0,01			

¹⁾ Soll gemäß Leistungserklärung

5.6. Schwefelhaltige Bestandteile*

Säurelösliches Sulfat und Gesamtschwefel nach DIN EN 1744-1

Korngruppe	Gehalt	an säurelösliche	m Sulfat*	Gesamtschw	efelgehalt S*
d/D [mm] [i	Ist	Kate	gorie		-%]
	[M%]	lst	Soll ¹⁾	Ist	Soll ¹⁾
0/2	< 0,1	AS _{0,2}	AS _{0,2}	< 0,05	≤ 1

Alkali-Kieselsäure-Reaktion nach Alkali-Richtlinie: 2013-10 5.7.

"Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton"

Die Lieferkörnung 0/2 des Werkes Schlagsdorf ist, nach den Prüfergebnissen der bisherigen Güteüberwachung und gemäß Alkali-Richtlinie Abschnitt 4.3, nach Anhang A der Richtlinie zu prüfen. Nach den aktuellen Prüfergebnissen in Anlage 1 erfüllt die Körnung die Kriterien für die Kennzeichnung als:

> Gesteinskörnung nach DIN EN 12620 mit Alkaliempfindlichkeitsklasse E I-O – E-I-OF

Befund 6

Die untersuchte Gesteinskörnung 0/2 des Werkes Schlagsdorf erfüllt hinsichtlich der geprüften Eigenschaften die Anforderungen an natürliche Gesteinskörnungen gemäß DIN EN 13139 und Leistungserklärung des Herstellers.

Dipl.-Geol. Ch. Hartmann Leiterin der Prüfstelle

^{*} Prüfstelle: SGS Institut Fresenius GmbH – Prüfbericht 6406338 vom 29.06.2023

^{*} Prüfstelle: SGS Institut Fresenius GmbH – Prüfbericht 6406338 vom 29.06.2023

Prüf- und Forschungslaboratorium GmbH

Prüfung alkaliempfindlicher Bestandteile nach Alkali-Richtlinie (2013-10), Anhang A

Werk: Schlagsdorf

Lieferkörnung: 0/2

1. KORNGRÖSSENVERTEILUNG

Kornklasse	mm	Summe	< 1	1/2	2/4	4/8	8/16	16/32	> 32
Masse	g								
Anteil	Masse-%			siehe Punkt 5.2					

2. PETROGRAPHISCHE PRÜFUNG

Prüfkornklasse	mm	4/8	8/16	16/32	> 32
Einwaage	g			10/02	- 02
alkaliunempfindliche Bestandteile	g				
Flint	g				
Opalsandstein und fragliche Bestandteile	g				
alkaliunempfindliche Bestandteile	Masse-%				
Flint	Masse-%				
Opalsandstein und fragliche Bestandteile	Masse-%				

3. ALKALIEMPFINDLICHE BESTANDTEILE

THE PROPERTY OF THE PROPERTY O	1 lie by							
Lieferkörnung		0/2	2	2/8	8/16	16/32		
Prüfkornklasse	mm	1/2	2/4	4/8	8/16	16/32	> 32	
Einwaage	g	407,4	-	-	-	-	- UZ	
Masse nach NaOH-Test	g	406.9	-	-		-		
Opalsandstein	Masse-%	0,1	_	-	_	_		
Soll E I-O						≤ 0,5		
Soll E II-O	Masse-%	≤ 2	2,0					
Erweichte Körner	g		1	-	_	2,0		
Erweichte Körner	Masse-%			-	-			
Flintrohdichte	kg/m³							
Reaktionsfähiger Flint	Masse-%							
Soll E I-OF	Masse-%	/			≤ ;	3,0		
Soll E II-OF	Masse-%	/				0,0		
5x Opalsandstein und reaktionsfähiger Flint	Masse-%					0,0		
Soll E I-OF	Masse-%				≤ 4	4,0		
Soll E II-OF	Masse-%					5,0		

4. BEURTEILUNG DER ALKALIEMPFINDLICHKEIT

Prüfkornklasse		lmm	1/2	2/4	4/8	8/16	16/32	> 32
Opalsandstein	unbedenklich	E I-O	X	2,7	4/0	0/10	10/32	- 32
	bedingt brauchbar	E II-O					ļ	**
	bedenklich	E III-O						
Opalsandstein	unbedenklich	E I-OF	х					
und Flint	bedingt brauchbar	E II-OF						
	bedenklich	E III-OF						

Die geprüften Lieferkörnungen **0/2** erfüllt die Anforderungen an die Alkaliempfindlichkeitsklasse E I-O - E I-OF.

Dies ist eine Einzelprüfung im Rahmen der freiwilligen Güteüberwachung.