STRASSEN- UND TIEFBAU mbH &

Ernest-Solvay-Straße 1 06406 Bernburg

Tel.: 0 34 71 - 3 47 66-0 Fax: 0 34 71 - 3 47 66-30

www.pstbernburg.de office@pstbernburg.de

Prüfgesellschaft für Straßen- und Tiefbau mbH & Co. KG Ernest-Solvay-Straße 1 • 06406 Bernburg

· Anerkannte Prüfstelle nach RAP Stra für Baustoffe und Baustoffgemische im Straßenbau 0 Baustoffeingangsprüfungen Eignungsprüfungen A1 Fremdüberwachungen 3 Kontrollprüfungen А3 BB3 D3 G3 НЗ 13

Anerkennung für Eignungs- und Fremdüberwachungsprüfungen nach TL G SoB-StB Vertragslabor des BAU-ZERT e.V.

- Bauaufsichtliche Anerkennung als Zertifizierungs- und Überwachungsstelle für Gesteinskörnungen mit Alkaliempfindlichkeit nach der Alkali-Richtlinie nach Landesbauordnung (Kennziffer: SAN 04) Anerkannte Prüfstelle der DB AG zur Gütesicherung
- Gesellschafter der bupZert GmbH
- MEMBER of the euro lab
 Mitgliedschaft in der FGVSVI
- Mitglied im Verband der Straßenbaulaboratorien e.V.
- Mitglied im <u>bup</u> Bundesverband unabhängiger Institute für bautechnische Prüfungen e.V.

SCHWENK Sand & Kies Nord GmbH & Co. KG Am Saale-Dreieck 3

39240 Calbe (Saale) OT Schwarz

PRÜFZEUGNIS NACH TL Gestein-StB

Prüfzeugnis Nr.:	3800/M/0367bas/23	Datum:	31.08.2023	
Werksanschrift:	SCHWENK Sand & Kies Nord	GmbH & Co. KG		
	Am Saale-Dreieck 3			
	39240 Calbe (Saale) OT Schwi	arz		
Werk:	Schwarz	Gesteinsart:	Saale-Sand/-Kies	

Angaben über die Probenahme:

Ort:	Schwarz	
Probenehmer:	Herr Mikoleit (Werk), Herr Kehl (BAU-ZERT e.V.)	
Bemerkung:	Der Probentransport zur PST erfolgte am 19.05.2023.	
Prüfauftrag:	2023-1	

Zweck			WPK ext RUNDKO			
Nr.	Sortennummer	l e	nskörnung [mm]	Datum der Probenahme	Entnahmestelle	Anwendungsbereich
1	S 01/S 05	0/2		15.05.2023	Halde	X DIN EN 12620 O, U, BTS, ZTV-ING X DIN EN 13043 MA, SMA, AC D, AC B, AC TD, AC T X DIN EN 13242
2	S 10	UK 0/2		15.05.2023	Halde	X DIN EN 13043 MA, SMA, AC D, AC B, AC TD, AC T X DIN EN 13242
3	K 01/K 05	2/8	·	15.05.2023	Halde	X DIN EN 12620 O, U, BTS, ZTV-ING
4	K 03/K 07	8/16		15.05.2023	Halde	X DIN EN 12620 O, U, BTS, ZTV-ING
5	K 04/K 08	16/32		15.05.2023	Halde	X DIN EN 12620 O, U, BTS, ZTV-ING

Bemerkungen:

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände.

Prüfumfang und Anforderungen gemäß den TL Gestein-StB unter Beachtung der ZTV-StB LSBB ST 21 des Landes Sachsen-Anhalt und der DA-Nr.3/2017-33/1 des Landes Thüringen.

Verteiler:	Hersteller (1 x Original, 1 x PDF)	BAU-ZERT e.V. (1 x PDF)	
Lieferabsicht:	Sachsen-Anhalt*	Thüringen*	

^{*} Einreichung an Landesämter durch den BAU-ZERT e.V.

Das Prüfzeugnis umfasst 13 Seiten.

Geschäftsführer: Dipl.-Ing. Heiko Neumann

Kommanditgesellschaft: Pers. haftende Ges.:

Sitz Bernburg HRA 1097 Stendal PST Verwaltungsgesellschaft mbH HRB 4800 Stendal

Salzlandsparkasse

DE04 8005 5500 0360 0074 22 IBAN: NOLADE21SES

UST-IdNr. DE 814558352

ungekürzt an Dritte weitergegeben werden, r vorherigen schriftlichen Genehmigung. ichte, Prüfzeugnisse, Gutachten etc. dürfen nur u y Veröffentlichung, auch in Auszügen, bedarf der v Seite 2 / 13

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

vom 31.08.2023

I. GEOMETRISCHE ANFORDERUNGEN

Gesteinskörnungen (d/D) [mr	n]					0/2				
			Grenz- wert	Kategorie		Grenz- wert	Kategorie		Grenz- wert	Kategorie
Korngrößenverteilung EN 9	33-1	DI	N EN 1262	!O	D	IN EN 130	43	DIN	NEN 1324	2
Gehalt an Feinanteil (< 0,063 mr								•		
	1%]	0,1	f ₃	f ₃	0,1	f ₁₆	f ₃	0,1	f ₁₆	f ₃
Beurteilung der Feinanteile		***************************************			•					
Korngrößenverteilung		Nasssiel	huna							
Korngröße [mm]							-			
	1%]	2,9	3				_			
0,125 - 0,25 [N	1%]	10,6	14				_			
	1%]	49,6	63							
	1%]	26,5	90							
	1%]	8,4	98				_			
	1%]	1,8	100				_			
	1%]	0,1	100				_			
	1%]	0,1	100				_			
	1%]						-			
5,6 - 8,0 [N	1%]									
	1%]									
Überkorn		Soll	Ist							
bis Korngröße D [mm]	2,0			***************************************					
Grenzwerte [M	%]	85 - 99	98]						
bis Korngröße 1,4 D [mm]	2,8		G _F 85						
Grenzwerte [N	%]	95 - 100	100							
bis Korngröße 2 D	mm]	4,0								
[N	%]	100	100						·····	
Anforderungen an Siebdurchg	inge	Soll	Ist							
bei Siebgröße	nm]	0,06	3]	0,06	33		0,063		
Grenzwerte [N	%]	± 3 / ≤	<u> </u>		± 3 /	≤ 3		± 3 / ≤	3	
Werkstypische Toleranz [N	1%]	0 - 3	0,1		0 - 3	0,1		0 - 3	0,1	
bei Siebgröße	mm]	0,25	5							
Grenzwerte [N	%]	± 25	5							
Werkstypische Toleranz [N	1%]	0 - 35	14							
bei Siebgröße D/2	mm]	1,0]	1,0)		1,0		
	l. - %]	± 2	20]	±	10		± 1	0	
Werkstypische Toleranz [N	1%]	60 - 99	90		70 - 90	90	G _{τc} 10	70 – 90	90	GT _A 10
bei Siebgröße D	mm]	2,0			2,0)	_ Gtc 10	2,0		J GIAIO
Grenzwerte [N	%]	±	5		<u>+</u>	5		± 5	5	
Werkstypische Toleranz [M	l%]	92 - 99	98	<u> </u>	92 - 99	98		92 - 99	98	
Fließkoeffizient EN 9						08/2023				
Fließzeit Referenzsa	nd [s]					32			7	
Einzelwei	te [s]				25,1 25,	1 25,1	25,1 25,1			
	[s]				25	E	CSangegeben 25			

Seite 3 / 13 zum Prüfzeugnis Nr.: 3800/M/0367bas/23 vom 31.08.2023

I. GEOMETRISCHE ANFORDERUNGEN

Gesteinskörnungen (d/D) [mm]	1			UK	0/2			
5 (/ 1 1		Grenz-	Kategorie		enz- Kategorie		Grenz-	Kategorie
Korngrößenverteilung EN 933-1		wert IN EN 1304			ert Rategorie N 12620	וח	wert N EN 1324	
Gehalt an Feinanteil (< 0,063 mm)	 	114 E14 130-	-	DIN LI	1 12020		14 1.14 1.02	· · · · · · · · · · · · · · · · · · ·
[M%	0,1	f ₁₆	f ₃			0,1	f ₁₆	f ₃
Beurteilung der Feinanteile	0,1	116	1 13	L		0,1	116	13
beditending der Femantene								
Korngrößenverteilung	1	_						
Korngröße [mm]	Nasssie	bung						
< 0,125 [M%	0,7	1	1 F					
0,125 - 0,25 [M%		4						
0,25 - 0,5 [M%		39						
0,5 - 1,0 [M%		91	† 					
1,0 - 2,0 [M%		100	† -					
2,0 - 2,8 [M%		100	†					
2,8 - 3,15 [M%		100	† 					
3,15 - 4,0 [M%		100	 -					
4,0 - 5,6 [M%			†					1
5,6 - 8,0 [M%			1					
[M%			1 -					
Überkorn	Soll	Ist						
bis Korngröße D [mm]		L	- I					
Grenzwerte [M%]		100*	-					i
bis Korngröße 1,4 D [mm]			G _F 85					-
Grenzwerte [M%]	-	100	- J					
bis Korngröße 2 D [mm]			-					
[M%]		100		<u> </u>				
Anforderungen an Siebdurchgänge		Ist						
bei Siebgröße [mm]	0,06		 	1		0,06	3	
Grenzwerte [M%]			- 			± 3 / ≤		
Werkstypische Toleranz [M%		0,1				0 - 3	0,1	1
bei Siebgröße [mm]			-					1
Grenzwerte [M%]			- -					1
Werkstypische Toleranz [M%			┥ ┣			Т		1
bei Siebgröße D/2 [mm		<u>. </u>	┤			1,0		1
Grenzwerte [M%]		10	┪			± 1	0	1
Werkstypische Toleranz [M%		91	- - -			79 - 99	91	1
bei Siebgröße D [mm			G _{τc} 10			2,0	-	GT _A 10
Grenzwerte [M%]		5	 			± ±		1
Werkstypische Toleranz [M%]		100*	- - - - - - - - - -	<u> </u>		95 - 99	100*	1
Workstypisone Foleranz [W.*/6]	30-30	100	<u> </u>		1		100	
Fließkoeffizient EN 933-6		08/2023						
Fließzeit Referenzsand [s		32						
Einzelwerte [s	- 		26,7 26,6					
[5	3] 27	E _{CSan}	gegeben27					
*Bemerkung:	Hersteller	die typisch	e Korngrößen	verteilung aufze	odurchgang auf D eichnen und anget 1 enthalten sein m	en, wobei di	so muss d e Siebe D,	er d, d/2 und

vom 31.08.2023

Seite 4 / 13 zum Prüfzeugnis Nr.: 3800/M/0367bas/23

I. GEOMETRISCHE ANFORDERUNGEN

Gesteinskörnungen (d/D)	[mm]		2/8	Ī		8/16	I		16/32	
		***************************************	Grenz- wert	Kategorie		Grenz- wert	Kategorie		Grenz- wert	Kategorie
Korngrößenverteilung	EN 933-1	1	Weit	L		*****				1
	0,063 mm)									
	[M%]	0,2	f ₁	f _{0,5}	0,2	f ₁	f _{0,5}	0,1	f ₁	f _{0,5}
Korngrößenverteilung Korngröße [mm]		Na	sssiebung		Na	sssiebung		Na	ısssiebunç	J
0,063 - 0,125	[M%]									
0,125 - 0,25	[M%]									
0,25 - 0,5	[M%]									
0,5 - 1,0	[M%]	0,3 *	0							
1,0 - 2,0	[M%]	3,0	3							
2,0 - 2,8	[M%]	14,4	18							
2,8 - 3,15	[M%]	8,8	27							
3,15 - 4,0	[M%]	19,8	46		1,4 *	1]
4,0 - 5,6	[M%]	28,1	74		2,3	4				
5,6 - 8,0	[M%]	22,9	97		12,9	17]	0,5 *	1	
8,0 - 11,2	[M%]	2,7	100		43,4	60		1,6	2	
11,2 - 16,0	[M%]	0,0	100		32,2	92		16,8	19	
16,0 - 22,4	[M%]				7,8	100		51,8	71	
22,4 - 31,5	[M%]				0,0	100		27,1	98	
31,5 - 45,0	[M%]							2,2	100	
45,0 - 63,0	[M%]		······································					0,0	100	
> 63,0	[M%]									
Unterkorn		Soll	lst		Soll	Ist		Soll	lst	
bis Korngröße d/2	[mm]	1,0			4,0)		8,0)	
	[M%]	0 - 5	0		0 - 5	1		0 - 5	1	
bis Korngröße d	[mm]	2,0			8,0)		16,	0	
	[M%]	0 - 20	3		0 - 20	17		0 - 20	19	
Überkorn		Soll	lst	G _c 85/20	Soll	lst	G _c 85/20	Soll	lst	G _c 85/20
bis Korngröße D	[mm]	8,0			16,	0		31,	5	
	[M%]	85 - 99	97		85 - 99	92		85 - 99	98	
bis Korngröße 1,4 D	[mm]	11,2	2		22,	· · · · · · · · · · · · · · · · · · ·		45,	·	
	[M%]	98 - 100	100		98 - 100	100		98 - 100	100	4
bis Korngröße 2 D	[mm]	16,0			31,		1	63,		_
	[M%]	100	100		100	100		100	100	
Kornform										
Plattigkeitskennzahl	EN 933-3		02/2023			02/2023		<u></u>	02/2023	
****	[M%]	12		FI ₁₅	12		FI ₁₅	10		FI ₁₅
Kornformkennzahl	EN 933-4		08/2023	T		08/2023	т		08/2023	· · · · · · · · · · · · · · · · · · ·
	[M%]	9	SI ₂₀	SI ₁₅	8	SI ₁₅	SI ₁₅	10	SI ₁₅	SI ₁₅
Bruchflächigkeit	EN 933-5			,					·	
	[M%]	ohne P	rüfung	C _{NR}	ohne F	Prüfung	C _{NR}	ohne l	Prüfung	C _{NR}
Muschelschalengehalt	EN 933-7			_						
* und kleiner als das angeg	[M%]	ohne P	rüfung	SC ₁₀	ohne f	Prüfung	SC ₁₀	ohne l	Prüfung	SC ₁₀

^{*} und kleiner als das angegebene Sieb

Seite 5 / 13 zum Prüfzeugnis Nr.: 3800/M/0367bas/23 vom 31.08.2023

II. PHYSIKALISCHE ANFORDERUNGEN

		Gesteins- körnung [mm]	Prüf- körnung [mm]		Einze	wert/e			IST	Grenzwert/ Soll	Kategorie/ Beurteilung
Kornrohdichte											1000000
DIN EN 1097-6, Anhang A	[Mg/m³]	0/2 02/2023	0,063/2	2,64	2,64	2,65	2,64	i.M.	2,64	1	2,64
DIN EN 1097-6, Anhang A	[Mg/m³]	UK 0/2 02/2023	0,063/2	2,65	2,65	2,65	2,65	i.M.	2,65	/	2,65
DIN EN 1097-6, Anhang A	[Mg/m³]	2/8 02/2023	2/8	2,67	2,66	2,66	2,66	i.M.	2,66	1	2,66
DIN EN 1097-6, Anhang A	[Mg/m³]	8/16 02/2023	8/16	2,64	2,66	2,65	2,65	i.M.	2,65	/	2,65
DIN EN 1097-6, Anhang A	[Mg/m³]	16/32 02/2023	16/31,5	2,65	2,64	2,65	2,65	i.M.	2,65	/	2,65
Widerstand gege	n Zertrümmer	ung									
Los Angeles-Koe	effizient (LA)										
DIN EN 1097-2, Abschnitt 5	[M%]	8/16 02/2023	10/14		2	18			28	LA ₄₀	LA ₃₀
Schlagzertrümm	erungswert (S	Z)									
DIN EN 1097-2, Abschnitt 6	[M%]	8/16 08/2023	8/12,5	22,71	22	,53	22,30	i.M.	23	SZ ₃₅	SZ ₂₆
Bemerkungen:	Durchgeführt d	urch einen Mi	tarbeiter der	PST im F	Prüfinstit	ut Dr. M	oll GmbH	l & Co. k	(G.		
Frost- und Tauwi	iderstand										
Wasseraufnahme	e (W _{cm})										
DIN EN 1097-6, Anhang B	[%]	0/2 02/2023	0,063/2	0,3	0,4	0,3	0,3	i.M.	0,3	W _{cm} 0,5	W _{cm} 0,5
DIN EN 1097-6, Anhang B	[%]	UK 0/2 02/2023	0,063/2	0,3	0,2	0,3	0,3	i.M.	0,3	W _{cm} 0,5	W _{cm} 0,5
DIN EN 1097-6, Anhang B	[%]	2/8 02/2023	2/8	1,2	1,2	1,2	1,2	i.M.	1,2	W _{cm} 0,5	1,2
DIN EN 1097-6, Anhang B	[%]	8/16 02/2023	8/16	1,1	1,0	1,0	1,0	i.M.	1,0	W _{cm} 0,5	1,0
DIN EN 1097-6, Anhang B	[%]	16/32 02/2023	16/31,5	0,9	1,1	0,8	0,9	i.M.	0,9	W _{cm} 0,5	0,9
Frostbeanspruch	nung <i>(F)</i>		***************************************	Prüfflüs	sigkeit	Was	ser				
DIN EN 1367-1	[M%]	8/16 02/2023	8/16	0,1	C	,1	0,1	i.M.	0,1	F ₄	F ₁
Magnesiumsulfa	t-Beanspruchu	ing (MS)		Prüfflüs	sigkeit	Mag	nesiumsu	ılfat-Lsg.			
DIN EN 1367-2	[M%]	8/16 02/2023	10/14	3	,5		2,2	i.M.	3	MS _{NR}	MS _{NR}
Frost-Tausalz-Be	anspruchung			Prüfflüs	ssigkeit	: 1%-	ige NaCl-	Lsg.			
DIN EN 1367-6	[M%]	8/16 02/2023	8/16	1,4	1	,7	1,8	i.M.	2	≤ 5 ≤ 8	bestanden bestanden

vom 31.08.2023

Seite 6 / 13 zum Prüfzeugnis Nr.: 3800/M/0367bas/23

III. CHEMISCHE ANFORDERUNGEN

		Prüf- körnung [mm]	Einzelwert/e		IST	Grenzwert/ Soll	Kategorie/ Beurteilung
Alkali-Kieselsäure-f	Reaktion nach Rili AKR, Abschr	nitt 4					
Alkali-Richtlinie	Auf der Grundlage der petrog nach Rili AKR 10/2013 s Alkaliempfindlichkeitsklassen ein	sind die G		prüfung olgende	E I-O/ E I-OF	ΕI	E I-O/E I-OF
	Einstufung durch die ÜZ-Stelle						ΕI
Alkali-Kieselsäure-I	Reaktion nach Rili AKR, Anhang	n B					
Alkali-Richtlinie	Nach der DAfStb-Richtlinie "Vo ungebrochene Gesteinskörnt Saale, Elbe, Mulde und Elst Alkaliempfindlichkeit nach Anha	orbeugende M ungen > 2 m er im angrer	ı m bei Zugehörigkeit zu o nzenden Bereich gemäß	den Flus	ssläufen ur	nd Ablagerung	sgebieten von
EP; Referenz- prüfverfahren	Mörtelschnelltests	2/8 - 16/32 2012	Dehnung [mm/m]	i.M.	1,71	≤ 1,0	(E III-S)
NKV	Nebelkammerbetonversuch	2/8 + 8/16 2012/2013	Dehnung [mm/m]	i.M.	0,556/ Risse ≤0,2 mm	≤ 0,6	E I-S
lfd. PP Referenzverfahren	Mörtelschnelltest	2/8 + 8/16 08/2023	Dehnung [mm/m]	i.M.	1,52	≤ 1,81	E I-S
	Einstufung der Körnungen > 2 n		ÜZ-Stelle	I		,	E I-S
Gehalt an groben o	rganischen Verunreinigungen	Garon dio					<u> </u>
DIN EN 1744-1.	T	0/2	0.00				
Abschnitt 14.2	[M%]	08/2023	0,00		0,00	m _{LPC} 0,10	m _{LPC} 0,10
DIN EN 1744-1, Abschnitt 14.2	[M%]	UK 0/2 08/2023	0,00		0,00	m _{LPC} 0,10	m _{LPC} 0,10
DIN EN 1744-1, Abschnitt 14.2 DIN EN 1744-1.	[M%]	2/8 08/2023 8/16	0,00		0,00	m _{LPC} 0,05	m _{LPC} 0,05
Abschnitt 14.2	[M%]	08/2023	0,00		0,00	m _{LPC} 0,05	m _{LPC} 0,05
DIN EN 1744-1, Abschnitt 14.2	[M%]	16/31,5 08/2023	0,00		0,00	m _{LPC} 0,05	m _{LPC} 0,05
Stahlangreifende S	toffe						
Wasserlösliche Chl	orid-lonen						
DIN EN 1744-1, Abschnitt 7	[M%]	0/2 07/2023	0,00053		0,001	≤ 0,04	bestanden
DIN EN 1744-1, Abschnitt 7	[M%]	8/16 07/2023	0,00209		0,002	≤ 0,04	bestanden
Bemerkungen:	Die Prüfung erfolgte durch öko-	control GmbH	Schonebeck, Prufbericht I	Nr. 23-0	791 vom 1	7.07.2023.	
Schwefelhaltige Be							
Säurelösliches Sulf	tat (AS)	0/2			T	I	1
DIN EN 1744-1, Abschnitt 12	[M%]	12/2022	0,00492		0,005	≤ 0,8	AS _{0,8}
DIN EN 1744-1, Abschnitt 12	[M%]	8/16 12/2022	0,00656		0,007	≤ 0,8	AS _{0,8}
Bemerkungen:	Die Prüfung erfolgte durch öko-	control GmbH	Schönebeck, Prüfbericht	Nr. 22-1	713 vom 1	6.12.2022.	
Gesamtschwefel (S DIN EN 1744-1,	1	0/2					
Abschnitt 11	[M%]	12/2022	0,00209		0,002	≤ 1	bestanden
DIN EN 1744-1, Abschnitt 11	[M%]	8/16 12/2022	0,00267		0,003	≤ 1	bestanden
Bemerkungen:	Die Prüfung erfolgte durch öko-		Schonebeck. Prüfbericht	Nr. 2022	2-1/13 vom	16.12.2022.	
	rhärtungsstörende Bestandteile		T	1			Т
DIN EN 1744-1, Abschnitt 15.1 DIN EN 1744-1,	Prüfung mit Natronlauge	0/2 02/2023 2/8	heller als Farbbezugslsg.		heller	heller	bestanden
Abschnitt 15.1	Prüfung mit Natronlauge	02/2023	heller als Farbbezugslsg.		heller	heller	bestanden
Calciumcarbonatge	ehalt						
DIN EN 196-21	[M%]	0/2 07/2023	0,14166		0,1	1	0,1
II .		1 0//2023	\$.	1	-		

PETROGRAPHISCHE PRÜFUNGEN

Seite 7 / 13

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

(08/2023)

vom 31.08.2023

					de Alkalireakt		***************************************		
	*****	Ge	stemskom	ungen: 0/2	111111				
1. Antragsteller:				siehe 1. Se	eite				
2. Probenahme (Absch	nnitt A.3):		.,	siehe Seite	1				
3. Korngrößenverteilu	ing (Absc	hnitte A.4.2 und A.4.3)	I	siehe geom	netrische Seit	en			
Kornklasse	mm	Summe	< 1	1/2	2/4	4/8	8/16	16/32	> 32
Anteil	M%	100,0	89,6	8,4	2,0				
4. Petrographische Pi	rüfung (A	bschnitt A.5.3)		T	T			T	
Kornklasse					mm	4/8	8/16	16/32	> 32
Einwaage (G _{PE})			G _P	E .	g				
Alkaliunempfindliche B	estandteil	е	G _{PU} / G _P	e∈ x 100	M%				
Flint			G _{PF} / G _F	e∈ x 100	M%				
Opalsandstein und frag	jliche Bes	tandteile	G _{PO} / G _F	E × 100	M%				
5. Alkaliempfindliche	Bestandi	t eile (Abschnitte A.6.3 ur	nd A.7.3)						
Prüfkornklasse			mm	1/2	2/4	4/8	8/16	16/32	> 32
Einwaage		G _{NE} = (G _{PO})	g	400,0					
Gewicht nach NaOH-T	est	G _{NV}	g	399,4					
Opalsandstein	G	S _{NE} – G _{NW} /G _{PE} x 100	M%	0,2					
Erweichte Körner		G _{NW}	g						
		G _{NW} / G _{PE}	M%						
Flintrohdichte		ρm	kg/cm ³						
Reaktionsfähiger Flint		F _R	M%						
5 x Opalsandstein und reaktionsfähiger Flint			M%						
6. Beurteilung der Al	kaliempfi	ndlichkeitsklasse (Tabe	ellen 1 und	2)				1	7
Kornklasse			mm	1/2	2/4	4/8	8/16	16/32	> 32
	u	ınbedenklich	E I-O	E I-O					
Opalsandstein		edingt brauchbar edenklich	E III-O						
Opalsandstein und reaktionsfähiger Flint	t.	unbedenklich pedingt brauchbar pedenklich	E I-OF E II-OF	E I-OF		omator y v			
	1.5	JEGGHANGH	L III-OF	1	1		1	I	

7. Bemerkungen:

Entsprechend der Alkali-Richtlinie 10/2013 kann die Bestimmung der Rohdichte entfallen, wenn der Flintanteil < 2 M.-% beträgt. Dann können die vorhandenen Flinte als vollständig reaktionsfähig angesehen werden.

Seite 8 / 13

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

vom 31.08.2023

PETROGRAPHISCHE PRÜFUNGEN

(08/2023)Einstufungen von Gesteinskörnungen in Alkaliempfindlichkeitsklassen nach DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton" (10/2013), Anhang A Gesteinskörnungen: 2/8 mm 1. Antragsteller: siehe 1. Seite Angaben zur Probenahme siehe 1. Seite 2. Probenahme (Abschnitt A.3): 3. Korngrößenverteilung (Abschnitte A.4.2 und A.4.3) siehe geometrische Seiten 16/32 1/2 2/4 4/8 8/16 > 32 < 1 Kornklasse mm Summe 2,7 M.-% 100,0 0,3 3,0 43,0 51,0 Anteil 4. Petrographische Prüfung (Abschnitt A.5.3) 16/32 > 32 4/8 8/16 Kornklasse mm 403,0 Einwaage (GPF) GPE g Alkaliunempfindliche Bestandteile G_{PU} / G_{PE} x 100 M.-% 99,2 Flint G_{PF} / G_{PE} x 100 M.-% 8,0 G_{PO} / G_{PE} x 100 M.-% 0,0 Opalsandstein und fragliche Bestandteile 5. Alkaliempfindliche Bestandteile (Abschnitte A.6.3 und A.7.3) Prüfkornk<u>lasse</u> 4/8 8/16 16/32 > 32 mm 1/2 2/4 400,0 1 Einwaage $G_{NE} = (G_{PO})$ g 399,5 Gewicht nach NaOH-Test G_{NV} g G_{NE} - G_{NW} /G_{PE} x 100 M.-% 0,1 Opalsandstein Erweichte Körner G_{NW} g G_{NW} / G_{PE} M.-% entfällt Flintrohdichte kg/m³ ρ_{m} M.-% Reaktionsfähiger Flint 0.8 F_R M.-% 8.0 5 x Opalsandstein und reaktionsfähiger Flint 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) 16/32 > 32 1/2 2/4 4/8 8/16 Kornklasse mm E I-O E I-O unbedenklich E I-O bedingt brauchbar E II-O Opalsandstein bedenklich E III-O unbedenklich E I-OF E I-OF E I-OF Opalsandstein und bedingt brauchbar E II-OF reaktionsfähiger Flint E III-OF bedenklich E I-O/E I-OF 2/8 mm ist als einzustufen. Die Gesteinskörnung

7. Bemerkungen

Entsprechend der Alkali-Richtlinie 10/2013 kann die Bestimmung der Rohdichte entfallen, wenn der Flintanteil < 2 M.-% beträgt. Dann können die vorhandenen Flinte als vollständig reaktionsfähig angesehen werden.

Seite 9 / 13

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

vom 31.08.2023

PETROGRAPHISCHE PRÜFUNGEN

(08/2023)

nach DAfStb	-Richtlini	e "Vorbeugende Maßnah	men geger	n schädigen	de Alkalireal	ktion im Beto	n" (10/2013)	, Anhang A	
		Ges	teinskörn	ungen: 8/1	6 mm				
1. Antragsteller:				siehe 1. Se	eite				
2. Probenahme (Absch	nitt A.3):			Angaben z	zur Probenah	me siehe 1.	Seite		
3. Korngrößenverteilu	ı ng (Abso	hnitte A.4.2 und A.4.3)		siehe geor	metrische Se	iten			
Kornklasse	mm	Summe	< 1	1/2	2/4	4/8	8/16	16/32	> 32
Anteil	M%	100,0	1,4	0,0	0,0	15,2	75,6	7,8	
4. Petrographische Pr	üfung (A	bschnitt A.5.3)				T		1	
Kornklasse					mm	4/8	8/16	16/32	> 32
Einwaage (G _{PE})			G _F	èΕ a	g	406,5	3061,3		
Alkaliunempfindliche B	estandteil	е	G _{PU} / G _F	⊃E × 100	M%	99,3	98,4		
Flint			G _{PF} / G _F	E × 100	M%	0,7	1,6		
Opalsandstein und frag	liche Bes	standteile	G _{PO} / G _l	PE x 100	M%	0,0	0,0		
5. Alkaliempfindliche	Bestand	teile (Abschnitte A.6.3 ur	nd A.7.3)						
Prüfkornklasse			mm	1/2	2/4	4/8	8/16	16/32	> 32
Einwaage		$G_{NE} = (G_{PO})$	g			1	1		
Gewicht nach NaOH-T	est	G_NV	g			1	1		
Opalsandstein	(G _{NE} – G _{NW} /G _{PE} x 100	M%			/	1		
Erweichte Körner		G _{NW}	g			/	1		
		G _{NW} / G _{PE}	M%				1		
Flintrohdichte		ρ <mark>m</mark>	kg/m³			entfällt	entfällt		
Reaktionsfähiger Flint		F _R	M%			0,7	1,6		
5 x Opalsandstein und reaktionsfähiger Flint			M%	periodical section of the section of		0,7	1,6		
6. Beurteilung der All	kaliempfi	ndlichkeitsklasse (Tabe	ellen 1 und	2)					1
Kornklasse		and the second s	mm	1/2	2/4	4/8	8/16	16/32	> 32
	l	unbedenklich	E I-O			E I-O	E I-O		
Opalsandstein	l t	pedingt brauchbar	E II-O						
	<u> t</u>	pedenklich	E III-O						
Opalsandstein und		unbedenklich	E I-OF			E I-OF	E I-OF		
reaktionsfähiger Flint		pedingt brauchbar	E II-OF						
		pedenklich	E III-OF		lot ala	<u> </u>	I-O/E I-OF	_:.	
Die Gesteinskörnung		8/16 r	rit))		ist als	E	I-U/E I-UF	einz	ustufen.

können die vorhandenen Flinte als vollständig reaktionsfähig angesehen werden.

Seite 10 / 13

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

vom 31.08.2023

PETROGRAPHISCHE PRÜFUNGEN

(08/2023)

4. Petrographische Prüfung (Abschnitt A.5.3) Kornklasse mm 4/8 8/16 16/32 > : Einwaage (GPE) GPE g 3016,2 5040,6 Alkaliunempfindliche Bestandteile GPU / GPE x 100 M% 98,9 97,0 Flint GPF / GPE x 100 M% 1,1 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	nach DAf9	th-Richtlin	Einstufungen von Ges		_). Anhang A	
1. Antragsteller: siehe 1. Seite 2. Probenahme (Abschnitt A.3): Angaben zur Probenahme siehe 1. Seite 3. Korngrößenverteilung (Abschnitte A.4.2 und A.4.3) siehe geometrische Seiten Kornklasse mm Summe < 1	TIACH DAIG	to-riorium					don in Bet	(10/2010)	, , , , , , , , , , , , , , , , , , ,	
2. Probenahme (Abschnitt A.3): Angaben zur Probenahme siehe 1. Seite 3. Korngrößenverteilung (Abschnitte A.4.2 und A.4.3): siehe geometrische Seiten Kornklasse mm Summe <1 1/2 2/4 4/8 8/16 16/32 >: Anteli M% 100,0 0,5 0,0 0,0 0,0 18,4 78,9 2, 4. Petrographische Prüfung (Abschnitt A.5.3): Kornklasse mm Summe <1 1/2 2/4 4/8 8/16 16/32 >: 4. Petrographische Prüfung (Abschnitt A.5.3): Kornklasse mm 4/8 8/16 16/32 >: Elinwaage (GpE) GpE	1 Antropotollori									
Summer Summe Sum		obnitt A 2)					me siehe 1	Saita		
Kornklasse mm Summe < 1								. Seite		
Anteil M% 100,0 0,5 0,0 0,0 0,0 18,4 78,9 2, 4. Petrographische Prüfung (Abschnitt A.5.3) Komklasse				<i>-</i> 1				9/16	16/22	> 22
4. Petrographische Prüfung (Abschnitt A.5.3) Kornklasse mm 4/8 8/16 16/32 > : Einwaage (GPE) GPE g 3016.2 5040,6										2,2
March Marc				0,0						
Alkaliunempfindliche Bestandteile		raiding (/	ADSOFTHATE / N.O.O)			mm	4/8	8/16	16/32	> 32
Filint	Einwaage (G _{PE})			G _F	PE	g		3016,2	5040,6	
Opalsandstein und fragliche Bestandteile GPO / GPE x 100 M% 0,0 0,0 5. Alkaliempfindliche Bestandteile (Abschnitte A.6.3 und A.7.3) Prüfkornklasse mm 1/2 2/4 4/8 8/16 16/32 > : Einwaage GNE = (GPO) g /	Alkaliunempfindliche	Bestandte	ile	G _{PU} / G _l	PE × 100	M%		98,9	97,0	
5. Alkaliempfindliche Bestandteile (Abschnitte A.6.3 und A.7.3) Prüfkornklasse mm 1/2 2/4 4/8 8/16 18/32 > Einwaage G _{NE} = (G _{PO}) g I I I Gewicht nach NaOH-Test G _{NV} g I I I Opalsandstein G _{NE} - G _{NW} / G _{PE} x 100 M% I I I Erweichte Körner G _{NW} / G _{PE} M% I I I Flintrohdichte ρ _m kg/m³ entfällt 2546 Entfällt 2546 Reaktionsfähiger Flint F _R M% 1,1 0,2 Entfällt 2546 Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Opalsandstein bedingt brauchbar E II-O E I-OF E I-OF E I-OF E I-OF E I-OF	Flint			G _{PF} / G _I	⊃E x 100	M%		1,1	3,0	
Prüfkornklasse mm 1/2 2/4 4/8 8/16 16/32 > Einwaage G _{NE} = (G _{PO}) g I <t< td=""><td>Opalsandstein und fra</td><td>agliche Be</td><td>estandteile</td><td>G_{PO} / G</td><td>PE x 100</td><td>M%</td><td></td><td>0,0</td><td>0,0</td><td></td></t<>	Opalsandstein und fra	agliche Be	estandteile	G _{PO} / G	PE x 100	M%		0,0	0,0	
Einwaage	5. Alkaliempfindlich	e Bestaņo	dteile (Abschnitte A.6.3 u	nd A.7.3)				1		-1
Gewicht nach NaOH-Test G _{NV} g I I Opalsandstein G _{NE} − G _{NW} /G _{PE} x 100 M% I I Erweichte Körner G _{NW} g I I Flintrohdichte P _m kg/m³ entfällt 2546 Reaktionsfähiger Flint F _R M% 1,1 0,2 5 x Opalsandstein und reaktionsfähiger Flint M% 1,1 0,2 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Opalsandstein bedingt brauchbar E II-O E I-O E I-O E I-O Opalsandstein und reaktionsfähiger Flint unbedenklich E II-OF E I-OF E I-OF E I-OF	Prüfkornklasse			mm	1/2	2/4	4/8	8/16	16/32	> 32
Opalsandstein G _{NE} – G _{NW} /G _{PE} x 100 M% I I Erweichte Körner G _{NW} / G _{PE} M% I I Flintrohdichte ρ _m kg/m³ entfällt 2546 Reaktionsfähiger Flint F _R M% 1,1 0,2 5 x Opalsandstein und reaktionsfähiger Flint M% 1,1 0,2 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) X Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Opalsandstein bedingt brauchbar bedenklich E II-O E II-O E I-OF	Einwaage		$G_{NE} = (G_{PO})$	g				/	1	
Erweichte Körner	Gewicht nach NaOH-	Test	G _{NV}	g				,	1	
Flintrohdichte P _m kg/m³ entfällt 2546 Reaktionsfähiger Flint F _R M% 1,1 0,2 5 x Opalsandstein und reaktionsfähiger Flint F _R M% 1,1 0,2 5 x Opalsandstein und reaktionsfähiger Flint M% 1,1 0,2 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) Kornklasse mm 1/2 2/4 4/8 8/16 16/32 >	Opalsandstein		G _{NE} – G _{NW} /G _{PE} x 100	M%				1	1	
Flintrohdichte Pm kg/m³ Reaktionsfähiger Flint FR M% 1,1 0,2 5 x Opalsandstein und reaktionsfähiger Flint 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Opalsandstein Unbedenklich bedingt brauchbar bedenklich E II-O Dpalsandstein und reaktionsfähiger Flint E I-OF Dpalsandstein und reaktionsfähiger Flint E I-OF Dpalsandstein und reaktionsfähiger Flint	Erweichte Körner		G _{NW}	g				1	1	
Reaktionsfähiger Flint F _R M% 1,1 0,2 5 x Opalsandstein und reaktionsfähiger Flint 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) Kornklasse mm 1/2 2/4 4/8 8/16 16/32 Dopalsandstein Unbedenklich E I-O bedenklich E III-O Opalsandstein und reaktionsfähiger Flint E I-OF Dedingt brauchbar E II-OF Bedingt brauchbar E II-OF Bedingt brauchbar E II-OF			G _{NW} / G _{PE}	M%				1	1	
5 x Opalsandstein und reaktionsfähiger Flint M% 1,1 0,2 1,1 1,1	Flintrohdichte		ρm	kg/m³				entfällt	2546	
Feaktionsfähiger Flint 6. Beurteilung der Alkaliempfindlichkeitsklasse (Tabellen 1 und 2) Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Opalsandstein bedingt brauchbar E II-O bedenklich E III-O Opalsandstein und reaktionsfähiger Flint E II-OF bedingt brauchbar E III-OF	Reaktionsfähiger Flin	t	F _R	M%				1,1	0,2	
Kornklasse mm 1/2 2/4 4/8 8/16 16/32 > Depails and stein und reaktions fähiger Flint mm 1/2 2/4 4/8 8/16 16/32 > Max				M%				1,1	0,2	
Opalsandstein Unbedenklich bedingt brauchbar bedenklich E II-O bedenklich E II-O Dpalsandstein und reaktionsfähiger Flint E II-OF Dealsandstein und E II-OF Dealsandstein und E II-OF	6. Beurteilung der A	lkaliempt	fi ndlichkeitsklasse (Tab	ellen 1 und	2)					
Opalsandstein bedingt brauchbar E II-O bedenklich E III-O Opalsandstein und reaktionsfähiger Flint E II-OF	Kornklasse			mm	1/2	2/4	4/8	8/16	16/32	> 32
Dedenklich E III-O Unbedenklich E I-OF Opalsandstein und reaktionsfähiger Flint Dedenklich E I-OF bedingt brauchbar E II-OF			unbedenklich	E I-O				E I-O	E I-O	
Opalsandstein und reaktionsfähiger Flint unbedenklich E I-OF bedingt brauchbar E II-OF	Opalsandstein		•							
Opalsandstein und bedingt brauchbar E II-OF reaktionsfähiger Flint										
reaktionsfähiger Flint	Opalsandstein und							E I-OF	E I-OF	
Dedenklich E III-OF	reaktionsfähiger Flint									
Die Gesteinskörnung 16/32 mm ist als E I-O/E I-OF einzustufe	Die Ceeteinekämune					iet ale	<u> </u>	LO/E LOE	oinz	ustufon

Entsprechend der Alkali-Richtlinie 10/2013 kann die Bestimmung der Rohdichte entfallen, wenn der Flintanteil < 2 M.-% beträgt. Dann können die vorhandenen Flinte als vollständig reaktionsfähig angesehen werden.

Prüfgesellschaft für Straßenund Tiefbau mbH & Co. KG

Seite 11 / 13

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

vom 31.08.2023

Zählprotokoll Gerölla	nalyse	Werk:Schwarz_	(08/2023)
1. GK 25 (Nr., Name)	4136, Nienburg	2. Ort der Entnahme	Halde
3. Lagerstätten-Nr.		4. Tag der Entnahme	15.05.2023
5. Koordinaten	R.:	6. Probenummer	0354/23
	H.:	7. Probenart	Kies
8. Teufe (m)		9. Fraktion	8/16 mm
10. Masse der untersu	chten Probe (g) <u>3061,3</u>	11. Gezählte Gerölle	1511
12. Lithologie	fluviatile Kiessande	13. Stratigr. Zuordnung	Quartär, Pleistozän
_	(Mittel- u. Niederterrasse)		Saale- u. Weichsel-Kaltzeit
14. Bearbeiter	Dipl. Geol. R. Peetz		

Gruppe(n)	Geröllkomponenten	Anzahl	Korn-%	Masse (g)	M%	Bemerkungen
1	Quarz	751	49,69	1625,5	53,11	
2	Kieselschiefer (schwarz, grau)	10	0,66	19,7	0,64	MACA MATERIAL PARTIES AND
3	Quarzit	15	0,99	58,9	1,92	
4	Grauwacke	99	6,55	210,6	6,88	
5	übrige paläozoische Sedimente (quarzit.+ phyllit. Schiefer, Tonschiefer)	260	17,21	453,6	14,82	
6	Sandstein außer Gruppe 16 (einschl. sandiger Schluff-, Tonstein)	35	2,32	68,7	2,24	
7	Kalkstein (Mergelstein), einheimisch außer Gruppe 15	145	9,60	208,8	6,82	
8	Kalkstein (Dolomit), nordisch außer Gruppe 15	0	0,00	0,00	0,00	
9	Rhyolith, Andesite	136	9,00	274,6	8,97	
	basische Vulkanite	1	0,07	6,8	0,22	
10	Kristallin (Granit, Gneis), nordisch	37	2,45	84,1	2,75	
	Kristallin Mittelgebirge	0	0,00	0,00	0,00	
11	Feuerstein (dicht), alle Varietäten außer Gruppe 12	21	1,39	48,8	1,59	
	Zwischensumme I	1510	99,93	3060,10	99,96	
Gruppe(n)	Besonders zu beachtende Gerölle					
	Wasseraufnehmende, z.T. quellfähige anorganische Gerölle; z.T. alkalireaktiv	Anzahl	Korn-%	Masse (g)	M%	
12	Kreidekrustenführender u. poröser Feuerstein (Flint)	0	0,00	0,00	0,00	
13	Kieselkalke, Kieselkreide, Opalsandst.	0	0,00	0,00	0,00	NII
14	Kreide / Kreidekalke	0	0,00	0,00	0,00	
15	leichter u. poröser Kalk- u. Mergelstein	0	0,00	0,00	0,00	
16	Sedimentgest. mit lockerer Kornbindg. (z.B. Ton-, Schluff-, Sandsteine) u. quellfähige anorganische Bestandteile	0	0,00	0,00	0,00	
12 – 16	Zwischensumme II	0	0,00	0,00	0,00	
17	Braunkohle	0	0,00	0,00	0,00	
18	Inkohltes Holz, Xylit	0	0,00	0,00	0,00	
19	Brauneisenverkrustungen, Raseneisenerz	1	0,07	1,2	0,04	Toneisenstein (1)
20	Pyrit, Markasit	0	0,00	0,00	0,00	
17 – 20	Zwischensumme III	1	0,07	1,20	0,04	
21	Sonstige	0	0,00	0,00	0,00	
	Gesamtsumme	1511	100,00	3061,30	100,00	i i

Gesteinskörnungen nach TL Gestein-StB

Prüfgesellschaft für Straßenund Tiefbau mbH & Co. KG

zum Prüfzeugnis Nr.: 3800/M/0367bas/23

Seite 12 / 13

vom 31.08.2023

PETROGRAPHISCHE PRÜFUNG AUF UNGEEIGNETE BESTANDTEILE ENTSPRECHEND ZTV-STB LSBB ST 21

Werk:	Schwarz	Datum der Probenahme:	0)	siehe Seite 1		Probenehmer:			entspr. Seite	_
					χ	Körnungen in mm				
Bestandteile (Zusammensetzung)	Soll	Eigenschaften	4/8 (aus 2/8)	15 2/8)	4/8		8/16		16/32	32
	[M%]	(bes. Merkmale, Dichte, Farbe)				Anteile				
			[6]	[M%]	[g] [M%]	%] [g]		[M%]	[6]	[M%]
Firwaane			403,0	100,00		3061,3		100,00	5018,6	100,00
© Unbedenkliche Bestandteile			399,7	99,18		3011,3		98,37	4820,0	96,04
Σ Flint (Gesamtgehalt)	T		3,3	0,82		48	48,8	1,59	198,6	3,96
A1: Kreide und kreidekrustenführende Flinte, Kieselkalke, Kieselkreiden sowie Opalsandstein			0,0	0,00		0	0,0	00,00	0,0	0,00
A2: poröse Kalk- und Mergelsteine ^{·)}			0,0	00'0			0,0	00,00	0,0	00,00
A3: Sedimentgesteine (Ton-, Schluff- und Sand- steine) mit lockerer Kornbindung sowie quellfähige anorganische Bestandteile	T .		0,0	0,00		J	0,0	00,00	0,0	00'0
Σ A ungeeignete Bestandteile	< 0,50		0,0	00'0			0,0	00,00	0,0	0,00
B: im alkalischen Milieu lösliche anorganische Bestandteile und gering verfestigte oxydische Eisenverbindungen	≥ 0,25	8/16: Toneisenstein (1)	0,0	00'0			1,2	0,04	0,0	00'0
C: quellfähige organische Bestandteile	≥ 0,02		0,0	00'0			0,0	00,00	0,0	0,00

 $^{^{1}}$ poröse Kalk- u. Mergelsteine = Dichte < 2,5 g/cm 3

Bemerkungen: Die untersuchten Gesteinskörnungen entsprechen hinsichtlich des Gehaltes an ungeeigneten Bestandteilen dem Kapitel 3 Zeil 11.2 der ZTV-StB LSBB ST 21.

zum Prüfzeugnis Nr.: 3800/M/0367bas/23 vom 31.08.2023 Seite 13 / 13

	Allgemeine Angaben	
1	Konformitätsnachweis	
1.1	Konformitätsnachweisverfahren	2+
1.2	Codenummer des Zertifizierers/Überwachers (notified body)	0790
1.3	Ist die WPK zertifiziert/überwacht?	zertifiziert
		0790-CPR-2.3261.2388-01
1.4	Nr. des WPK-Zertifikates	0790-CPR-2.3261.2388-03
		0790-CPR-2.3261.2388-04
1.5	WPK-Beauftragter:	Herr Mikoleit
2	Prüfung	
2.1	Freiwillige Güteüberwachung/GÜ nach TL G SoB-StB:	Prüfauftrag 2023-l
2.2	A A A A A A A A A A A A A A A A A A A	Beurteilung durch BAU-
2.2	Verantwortlicher/Durchführender der WPK (intern):	ZERT e.V.
		AG Gestein
2.2	6. (4.4)	Schwenk Technologiezentrum
2.3	Ort/Adresse des Labors für die WPK (intern):	GmbH & Co. KG Altenburger
		Chaussee 3 06406 Bernburg
0.4	Wurde die Probenahme entsprechend den Anforderungen der DIN EN 932-	Beurteilung durch BAU-
2.4	1 durchgeführt?	ZERT e.V.
0 E	Werden alle verlangten Prüfungen der WPK (intern) im erforderlichen	Beurteilung durch BAU-
2.5	Prüfrhythmus durchgeführt?	ZERT e.V.
2.6	Werden die geforderten Aufzeichnungen der "WPK" ordnungsgemäß	Beurteilung durch BAU-
2.0	geführt?	ZERT e.V.
3	Lieferschein	
2.4		Beurteilung durch BAU-
3.1	Enthält der Lieferschein alle verlangten Angaben?	ZERT e.V.
2.2		Beurteilung durch BAU-
3.2	Enthält der Lieferschein alle notwendigen Zeichen?	ZERT e.V.
4	Herstellwerk	
4.1	Entspricht die Lagerung der Gesteinskörnungen den Anforderungen?	Beurteilung durch BAU-
7.1	Entspricht die Lagerung der Gesteinskornungen den Anlorderungen?	ZERT e.V.
4.2	Worden die Siles Helden Beven ete gekennzeighnet?	Beurteilung durch BAU-
→. ∠	Werden die Silos, Halden, Boxen etc. gekennzeichnet?	ZERT e.V.
5	Sonstiges Prüf Prüf Prüf Prüf Prüf Prüf Prüf Prüf	entfällt
	Prüf	

f. f. Straßer

Prüfgesellschaft für Straßen- und Tiefbau mbH & Co. KG

Dipl.-Ing. H. Neumann Prüfstellenleiter